Radiology

Orbital Floor Blowout Fracture

CASE

A 16-year-old male presents with head trauma. The patient was in gym class when another classmate ran into him, kneeing him in the left eye. There was no loss of consciousness. On presentation, the patient complains of headache, dizziness, nausea, visual disturbance, and photophobia. He has vomited several times. On review of systems, the patient also endorses double vision and numbness over the left cheek. The patient’s mother notes he is alert but is slow to respond to questions.  He has no prior history of facial fractures.

Physical Exam

BP 130/70, HR 58, RR 20, SpO2 99% on RA, Temp 98.6 F

The patient is alert and oriented.  He appears uncomfortable but is in no acute distress.

HEENT exam with left periorbital ecchymosis and edema, with tenderness to palpation. Diminished sensation to light touch over cheek and upper lip. Nasal bridge swelling and tenderness, with subtle nasal deviation to the right. No septal hematoma. Symmetric smile.

Pupils are equal, round, and reactive to light. No hyphema or subconjunctival hemorrhage. Left eye with decreased up-gaze as compared to the right. Extraocular movements of the left eye are painful.

The neck has normal range of motion. There is no cervical midline tenderness to palpation.

The patient’s history and examination are significant for trauma to the left eye and face. His examination reveals bony tenderness, with decreased sensation to light touch, and evidence of inferior rectus entrapment as evidenced by abnormal extraocular movements. These findings are concerning for orbital blow-out fracture. There is also concern for nasal bone fracture given nasal bridge swelling, tenderness, subtle deviation, and epistaxis. Given patient’s nausea, vomiting, dizziness, and slowed responses to questions (as per patient’s mother), intracranial injury was also considered.

The patient underwent a CT of the brain and face, with thin (1mm) cuts through the orbits (Figure 1).

Figure 1: Axial CT of the face (bone window) with fracture through the left orbital floor, with herniation of the orbital fat (“teardrop” sign) and inferiorly displaced inferior rectus muscle

Figure 1: Axial CT of the face (bone window) with fracture through the left orbital floor, with herniation of the orbital fat (“teardrop” sign) and inferiorly displaced inferior rectus muscle

DISCUSSION

Figure 2: Anatomy of the orbit (https://en.wikipedia.org/wiki/File:Orbital_bones.png)

Figure 2: Anatomy of the orbit (https://en.wikipedia.org/wiki/File:Orbital_bones.png)

The orbit is composed of six bones. The frontal bone forms the superior orbital rim and the roof of the orbit. The sphenoid bone and the zygomatic bone form the lateral wall of the orbit. The maxilla and the zygomatic bone form the infraorbital rim and floor of the orbit. Finally, the maxilla and ethmoid bones form the medial wall of the orbit (Figure 2).

Housed within, or within in close proximity to the bony orbit are the globe, six extra-ocular muscles, the infraorbital and supraorbital nerves, lacrimal duct system, medial and lateral canthal ligaments, and 4 pairs of sinuses (Neuman).

A blowout fracture is a fracture through any of the orbital walls, with an inferior fracture through the floor being the most common (Knipe). It is caused by direct force to the orbit. In children, nearly 50% of these injuries occur during sports, with the direct blow usually coming from a ball or another player (Hatton).

A trap door fracture is a sub-type of the orbital floor fracture. It is a linear fracture that inferiorly displaces and then recoils back to near-anatomic position. With this movement there is concern for entrapment of orbital fat and inferior rectus muscle, resulting in ischemia, restriction of ocular movement, and visual disturbance (Hacking). The trap door fracture is predominantly seen in the pediatric population, owing to increased elasticity of the orbital floor (Chung, Grant).

Clinically, a patient will present with periorbital edema and ecchymosis. Altered sensation or numbness over the cheek, upper lip, and upper gingiva is suggestive of infraorbital nerve injury. Proptosis of the eye is suggestive of orbital hematoma. A posteriorly displaced globe (enophthalmos) is suggestive of increased orbital volume secondary to fracture. An inferiorly displaced globe (orbital dystopia) is a result of muscle and fat prolapse into the maxillary sinus. Restricted and/or painful extraocular movements are suggestive of muscle entrapment (Neuman).

In children, a phenomenon called the oculocardiac reflex can occur. Stimulation of the ophthalmic division of the trigeminal nerve due to traction or pressure on the extraocular muscles or globe results in excitation of the vagus nerve, leading to bradycardia, nausea, and syncope. In severe cases, asystole can occur (Sires).

CT of the face, with thin (1mm) cuts through the orbit is the primary modality used for identification of orbital blowout fractures. Plain radiographs of the face and orbits are no longer the gold standard as they have poor sensitivity and specificity.  Trap door fractures may be occult, but any evidence of soft tissue herniation into the maxillary sinus (also known as the “teardrop” sign) should raise suspicion for a clinically significant fracture.

These injuries can be severe, and are often more significant in the pediatric population than the adult population, owing to associated soft tissue and muscular injuries. Almost half of children with this injury will require surgery, most frequently due to entrapment. Nearly half of pediatric patients will have ocular injuries (globe rupture, hyphema, retinal tear) and nearly one third of patients will have a second facial fracture (Hatton). 

Urgent ophthalmology and facial surgery consultations are indicated for orbital floor fractures with concern for entrapment (Chung).

Symptomatic treatment includes:

  • Head of bed elevation

  • Ice

  • Sinus precautions: no nose blowing, sneeze with the mouth open, no straw use or sniffing

  • Analgesia and anti-emetics as needed

 

For orbital fractures with extension into a sinus, the use of prophylactic antibiotics has limited data and often varies by institution (Neuman).

Corticosteroids are recommended for patients with diminished extraocular movements to reduce swelling and expedite improvement in diplopia (Neuman).

For orbital blowout fractures with evidence of entrapment and/or oculocardiac reflex, repair should be performed within 24-48 hours. Delayed repair (more than 2 weeks after injury) can be considered if mild-moderate diplopia is not spontaneously improving, or patient has worsening of enopthalmos > 2mm after initial edema and inflammation has resolved.  Other indications for surgical repair include large fracture (involvement of greater than 50% of the orbital floor) or multiple fractures (Chung).

 

CASE CONCLUSION

The patient was admitted for observation overnight in the setting of persistent nausea, vomiting, borderline bradycardia, and diplopia. He was placed on oral prednisone, as well as anti-inflammatory medication. Overnight his symptoms and heart rate improved, although he had persistent diplopia, with diminished upward gaze of the left eye. He was discharged home on hospital day 1, with plan for ophthalmology and facial surgery follow-up for operative planning.

Faculty Reviewer: Dr. Jane Preotle

 

REFERENCES & FURTHER READING

  1. Chung, Stella Y., and Paul D. Langer. “Pediatric Orbital Blowout Fractures.” Current Opinion in Ophthalmology, vol. 28, no. 5, 2017, pp. 470–476., doi:10.1097/icu.0000000000000407.

  2. Grant, John H., et al. “Trapdoor Fracture of the Orbit in a Pediatric Population.” Plastic and Reconstructive Surgery, vol. 109, no. 2, 2002, pp. 490–495., doi:10.1097/00006534-200202000-00012.

  3. Hacking, Craig. “Trapdoor Fracture.” Radiopaedia.org, radiopaedia.org/articles/trapdoor-fracture.

  4.  Hatton, Mark P., et al. “Orbital Fractures in Children.” Ophthalmic Plastic and Reconstructive Surgery, vol. 17, no. 3, 2001, pp. 174–179., doi:10.1097/00002341-200105000-00005. 

  5. Knipe, Henry, and Frank Gaillard.  “Orbital Blowout Fracture.” Radiopaedia.org, radiopaedia.org/articles/orbital-blowout-fracture-1.

  6. Neuman, Mark, and Richard G Bachur. “Orbital Fractures.” UpToDate, www.uptodate.com/contents/orbital-fractures.

  7. Sires, Bryan S. “Orbital Trapdoor Fracture and Oculocardiac Reflex.” Ophthalmic Plastic & Reconstructive Surgery, vol. 15, no. 4, 1999, p. 301., doi:10.1097/00002341-199907000-00014.

  8. Soll, D. B., and B. J. Poley. “Trapdoor Variety of Blowout Fracture of the Orbital Floor.” Plastic and Reconstructive Surgery, vol. 36, no. 6, 1965, p. 637., doi:10.1097/00006534-196512000-00017. 

Thrower’s Fracture of the Humerus: A Case Report

CASE REPORT:


A 35-year-old, right-handed male presented to the emergency department with complaint of right upper arm pain. He was a member of an amateur baseball team; just prior to arrival he threw a ball and immediately felt a pop and sharp pain in his right upper arm. Since that time, he had been unable to move his arm due to pain. He reported no prior injury to the arm but did state that over the last several weeks he had been having an ache in that arm. He was otherwise healthy, took no medications, denied weakness, numbness and tingling in his right arm. He was a non-smoker and an occasional drinker. He used no drugs.

Physical exam was non-focal except for the right upper extremity. His right upper arm was swollen and tender to the touch. He had decreased range of motion in his elbow and his shoulder secondary to the pain. He had an obvious deformity of the right bicep region. Distally the patient was neurovascularly intact with normal range of motion and light touch sensation intact in the wrist and hand. He had a 2+ radial pulse and capillary refill was less than 3 seconds.

The patient was given pain medication and sent for an x-ray of his right humerus. The x-ray demonstrated a displaced spiral fracture of the humerus (fig 1). The patient was placed in a coaptation splint and prior to discharge, reexamination revealed no evidence of radial nerve palsy or radial artery injury. The patient followed up with the orthopedic doctor on-call and underwent open reduction and internal fixation of his injury within 1 week (fig 2).

Figure 1. AP and oblique radiographs of the right humerus demonstrating a spiral fracture

Figure 1. AP and oblique radiographs of the right humerus demonstrating a spiral fracture

Figure 2: Right Humerus status post open reduction and internal fixation

Figure 2: Right Humerus status post open reduction and internal fixation

DISCUSSION:

This patient's presentation is consistent with a well described, but rarely observed phenomenon known as a 'Thrower's Fracture.' First reported in 1930 [1], cases have been reportedly related to everything from a baseball [2, 3], to a cricket ball [4], to a dodge ball [5], and hand grenades [6]. As with our patient, many patients who present with this injury are amateur athletes who have likely not developed adequate cortical strength of their bones as compared to professional athletes [7]. The injury is often preceded by several weeks to months of aching in the region of the humerus, which is thought to represent a stress fracture [2, 4, 8]. The complexity of the throwing motion and related transfer of forces, results in significant torque being applied to the humeral shaft, leading to a fracture, most commonly in the mid to distal third of the diaphysis.

These patients can have similar complications to any mid-shaft, spiral humeral fracture including damage to the radial artery and radial nerve [9, 10]. In these cases, given the active nature of these athletes, and if underlying complications have occurred, surgeons may elect to repair this injury surgically [2, 4, 10], though this is not always necessary given the fracture morphology.

Faculty Reviewer: Dr. Kristy McAteer

REFERENCES:

  1. Wilmoth, C., Recurrent fracture of the humerus due to sudden extreme muscular action. Journal of Bone and Joint Surgery, 1930. 12: p. 168-169.

  2. Miller, A., C.C. Dodson, and A.M. Ilyas, Thrower's fracture of the humerus. Orthop Clin North Am, 2014. 45(4): p. 565-9.

  3. Perez, A.Z., C.; Atia, H., Thrower's fracture of the humerus: An otherwise healthy 29-year-old man presented for evaluation of acute onset of severe right arm pain. Emergency Medicine, 2016. 48(5): p. 221-222.

  4. Evans, P.A., et al., Thrower's fracture: a comparison of two presentations of a rare fracture. J Accid Emerg Med, 1995. 12(3): p. 222-4.

  5. Colapinto, M.N., E.H. Schemitsch, and L. Wu, Ball-thrower's fracture of the humerus. CMAJ, 2006. 175(1): p. 31.

  6. Chao, S.L., M. Miller, and S.W. Teng, A mechanism of spiral fracture of the humerus: a report of 129 cases following the throwing of hand grenades. J Trauma, 1971. 11(7): p. 602-5.

  7. Ogawa, K. and A. Yoshida, Throwing fracture of the humeral shaft. An analysis of 90 patients. Am J Sports Med, 1998. 26(2): p. 242-6.

  8. Reed, W.J. and R.W. Mueller, Spiral fracture of the humerus in a ball thrower. Am J Emerg Med, 1998. 16(3): p. 306-8.

  9. Curtin, P., C. Taylor, and J. Rice, Thrower's fracture of the humerus with radial nerve palsy: an unfamiliar softball injury. Br J Sports Med, 2005. 39(11): p. e40.

  10. Bontempo, E. and S.L. Trager, Ball thrower's fracture of the humerus associated with radial nerve palsy. Orthopedics, 1996. 19(6): p. 537-40.

Intussusception Deception: An Atypical Presentation

THE CASE

A previously healthy 10 year-old male presents with one day of RLQ pain and vomiting.  He awoke earlier that morning with mild to moderate pain, ate oatmeal for breakfast, and then vomited twice. About one hour later, he was sitting at his desk at school when he suddenly developed more severe abdominal pain. He initially presented to his pediatrician’s office, and was subsequently referred to Hasbro Children’s Hospital Emergency Department. No known sick contacts and no recent travel outside Rhode Island. No prior surgeries. He denies fever, chills, respiratory symptoms, melena or hematochezia, diarrhea, or urinary symptoms.

On exam, BP 115/71, HR 80, Temp 98.5F, RR 20, SpO2 99%. He is ill-appearing and acutely distressed. He has RLQ tenderness to palpation and involuntary guarding. He has normal testicular lie without tenderness, edema or erythema.  

DIAGNOSTIC STUDIES

Lab studies notable for WBC 7.9, blood glucose 114.

Abdominal/appendiceal ultrasound was ordered and showed an enteroenteric intussusception in the RLQ with adjacent inflammation and free fluid concerning for possible focal perforation (Figure 1).

Figure 1. “Crescent in a donut” sign. Transverse view of intestinal intussusception. The hyperechoic crescent is formed by mesentery that has been dragged into the intussusception.

Figure 1. “Crescent in a donut” sign. Transverse view of intestinal intussusception. The hyperechoic crescent is formed by mesentery that has been dragged into the intussusception.

DISCUSSION

Intussusception occurs when a part of the bowel invaginates into itself, causing venous and lymphatic congestion. Untreated, intussusception may lead to ischemia and perforation.

Classic Presentation

Intussusception most commonly occurs in infants and toddlers ages 6 to 36 months-old, and approximately 80 percent of cases occur in children younger than 2 years-old [1]. Classically, parents report 15-20 minute episodes, during which their child seems acutely distressed, characterized by vomiting, inconsolable crying, and curling the legs close to the abdomen in apparent pain. They may also describe a “normal period” between episodes or offer a history that includes grossly bloody stools.

75 percent of cases of intussusception in young children have no clear trigger. Some evidence suggests that viral illness plays a role, particularly enteric adenovirus, which is thought to stimulate GI tract lymphatic tissue, in turn causing Peyer’s patches in the terminal ileum to hypertrophy and act as lead points for intussusception [2].

Atypical Presentation

Approximately 10 percent of intussusceptions occur in children older than 5 years [3]. Unlike their younger counterparts, these patients tend to present atypically, with pathologic lead points that triggered the event [4]. The patient described above illustrates this well. At 10 years-old, he presented with peritonitis after his intussusception caused focal perforation, and had no prior history of colicky abdominal pain or bloody stools. Ultimately, he was found to have Meckel’s diverticulum. This is the most common lead point among children, but other causes include polyps, small bowel lymphoma, and vascular malformations [5].

Figure 2. Elongated soft tissue mass. Case courtesy of A.Prof Frank Gaillard,  radiopaedia.org

Figure 2. Elongated soft tissue mass. Case courtesy of A.Prof Frank Gaillard, radiopaedia.org

Diagnostic Testing

Plain abdominal radiographs are not sufficient to rule out intussusception, but they can be useful to exclude perforation and ensure that non-operative reduction by enema is safe.  Some signs of intussusception on abdominal x-ray include an elongated soft tissue mass (classically in the right upper quadrant as in Figure 2) and/or an absence of gas is the distal collapsed bowel, consistent with bowel obstruction.

The optimal diagnostic test for intussusception depends on the patient’s presentation. When infants or toddlers present classically with intermittent severe abdominal pain and no signs of peritonitis, air or contrast enema is the study of choice because it is both diagnostic and therapeutic (Figure 3).

Figure 3. Intussusception treat with air enema. Case courtesy of Dr Andrew Dixon,  radiopaedia.org

Figure 3. Intussusception treat with air enema. Case courtesy of Dr Andrew Dixon, radiopaedia.org

When the diagnosis is unclear, however, abdominal ultrasound is preferred. Ultrasound has been shown to be 97.9% sensitive and 97.8% specific for diagnosing ileocolic intussusception, and is increasingly becoming the initial diagnostic study of choice at some institutions [6,7]. In addition to the ultrasound finding of “crescent in a donut” shown above, other sonographic signs of intussusception include the “target sign” (Figure 4) and the “pseudokidney sign” (Figure 5).

Figure 4. Target Sign. Transverse view of the intestinal intussusception. The hyperechoic rings are formed by the mucosa and muscularis, and the hypoechoic bands are formed by the submucosa. Case courtesy of A.Prof Frank Gaillard,  radiopaedia.org

Figure 4. Target Sign. Transverse view of the intestinal intussusception. The hyperechoic rings are formed by the mucosa and muscularis, and the hypoechoic bands are formed by the submucosa. Case courtesy of A.Prof Frank Gaillard, radiopaedia.org

Figure 5. Pseudokidney sign. Longitudinal view of intestinal intussusception. This view of the intussuscepted bowel mimics a kidney. Case courtesy of A.Prof Frank Gaillard,  radiopaedia.org

Figure 5. Pseudokidney sign. Longitudinal view of intestinal intussusception. This view of the intussuscepted bowel mimics a kidney. Case courtesy of A.Prof Frank Gaillard, radiopaedia.org

Treatment

Without clinical or radiographic signs of perforation, non-operative reduction is first-line treatment. Operative intervention is indicated when the patient is acutely ill, has a lead point needing resection, or the intussusception is in a location unlikely to respond to non-surgical management. For example, small bowel intussusceptions are less likely than ileocolic intussusceptions to respond to non-operative techniques [8].  


CASE CONCLUSION

The patient was taken emergently to the OR, where he underwent exploratory laparoscopy with laparoscopic appendectomy and resection of a Meckel’s diverticulum. No intussusception was noted intraoperatively.  He recovered well, and was discharged home two days later.


A BIT MORE ABOUT MECKEL’S DIVERTICULUM

Meckel’s diverticulum is the most common congenital anomaly of the GI tract. It is a true diverticulum (meaning it contains all layers of the abdominal wall) that is a persistent remnant of the omphalomesenteric duct, which connects the midgut to the yolk sac of the fetus. The “rule of twos” is the classic mnemonic to recall some other important features: it occurs in approximately 2% of the population; the male-to-female ratio is 2:1; it most often occurs within 2 feet the ileocecal valve; it is approximately 2 inches in size; and 2-4% of patients will develop complications related to Meckel’s diverticulum (such as intussusception), usually before age 2 [9].


TAKEAWAY POINTS

  • Consider intussusception in older patients. While it is less likely, approximately 10% of cases occur in patients over 5 years old.

  • In older patients, suspect pathological lead points, such as Meckel’s diverticulum, as potential etiologies of intussusception.

  • Obtain an abdominal x-ray before performing diagnostic/therapeutic enema to rule out perforation.

  • Ultrasound is the preferred test when the diagnosis is uncertain.

  • Patients with small bowel intussusceptions or known lead points are less likely to respond to non-operative reduction.

  • Patients who are acutely ill-appearing require surgery as first-line treatment.


Faculty Reviewer: Dr. Jane Preotle


SOURCES

  1. Intussusception: clinical presentations and imaging characteristics.. Retrieved June 22, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/22929138

  2. Adenovirus infection and childhood intussusception. - NCBI. Retrieved June 22, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/1415074

  3. Surgical approach to intussusception in older children: influence of .... Retrieved June 22, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/25840080

  4. The clinical implications of non-idiopathic intussusception. - NCBI. Retrieved June 22, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/9880737

  5. The leadpoint in intussusception. - NCBI. Retrieved June 22, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/2359000

  6. Pediatric Emergency Medicine-Performed Point-of-Care Ultrasound. Retrieved June 22, 2018, from http://www.annemergmed.com/article/S0196-0644(17)31265-9/fulltext

  7. Comparative Effectiveness of Imaging Modalities for the Diagnosis .... Retrieved June 22, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/28268146

  8. Small bowel intussusception in symptomatic pediatric patients - NCBI. Retrieved June 22, 2018, from https://www.ncbi.nlm.nih.gov/pubmed/11910476

  9. Sagar, Jayesh, Vikas Kumar, and D. K. Shah. "Meckel's diverticulum: a systematic review." Journal of the Royal Society of Medicine 99, no. 10 (2006): 501-505.